6-3 Study Guide and Intervention

Square Root Functions and Inequalities

Square Root Functions A function that contains the square root of a variable expression is a **square root function**. The domain of a square root function is those values for which the radicand is greater than or equal to 0.

Example: Graph $y = \sqrt{3x - 2}$. State its domain and range.

Since the radicand cannot be negative, the domain of the function is $3x - 2 \ge 0$ or $x \ge \frac{2}{3}$.

The x-intercept is $\frac{2}{3}$. The range is $y \ge 0$.

Make a table of values and graph the function.

x	y
$\frac{2}{3}$	0
1	1
2	2
3	$\sqrt{7}$

Exercises

Graph each function. State the domain and range.

Graph each inequality.

D: X = 0 R: 4 = 0

1. $y < 2\sqrt{x}$

$$2. y < 3\sqrt{2x - 1}$$

$$3. y \ge \sqrt{x+1} - 4$$

X	J y
-	-4
0	-3
3	1-2
	3

Chapter 6

6-4 Study Guide and Intervention nth Roots

Simplify Radicals

Square Root	For any real numbers a and b , if $a^2 = b$, then a is a square root of b .
nth Root	For any real numbers a and b , and any positive integer n , if $an = b$, then a is an n th root of b .
Real <i>n</i> th Roots of <i>b</i> , $\sqrt[n]{b}$, $-\sqrt[n]{b}$	 If n is even and b > 0, then b has one positive real root and one real negative root. If n is odd and b > 0, then b has one positive real root. If n is even and b < 0, then b has no real roots. If n is odd and b < 0, then b has one negative real root.

Example 1: Simplify $\sqrt{49z^8}$.

$$\sqrt{49Z^8} = \sqrt{(7z^4)^2} = 7z^4$$

 z^4 must be positive, so there is no need to take the absolute value.

Example 2: Simplify $-\sqrt[3]{(2a-1)^6}$ $-\sqrt[3]{(2a-1)^6} = \sqrt[3]{[(2a-1)^2]^3} = -(2a-1)^2$

Exercises

Simplify.

$$1.\sqrt{81}$$

9

$$2.\sqrt[3]{-343}$$

3.
$$\sqrt{144p^6}$$

$$12 p^3$$

$$4.\pm\sqrt{4a^{10}}$$

$$5.\sqrt[5]{243p^{10}}$$

6.
$$-\sqrt[3]{m^6n^9}$$

$$-m^2n^3$$

Use a calculator to approximate each value to three decimal places.

1.
$$\sqrt{62}$$

7.87

2.
$$\sqrt{1050}$$

32.404

3.
$$\sqrt[3]{0.054}$$

0.378

$$4. - \sqrt[4]{5.45}$$

-1.290

72.663

6.
$$\sqrt{18,600}$$

134.382